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Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals
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The propagation of coherent and partially coherent light pulses through a one-dimensional photonic crystal
(1DPQ is investigated. The dependence of the evolution of the pulses inside the 1DPC on incident angles and
the effect of the coherence of the pulses on the propagation properties are discussed. The evolution of a pulse
inside the 1DPC is affected by the coherence of the pulse. As the coherence decreases, superluminal propro-
gation changes to subluminal propagation.
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I. INTRODUCTION between experimental measurements and theoretical predic-
tions. Furthermore, we extend our results to the cases of
Photonic crystals have been intensively investigated irpartially coherent light pulses passing through the 1DPC and
many studieq1,2]. The most essential property of the pho- discuss how the coherence of light affects the propagation
tonic crystals is the photonic band-gap structu@BG’s).  dynamics of light pulses inside the 1DPC.
Due to the analogy between light through a one-dimensional

photonic crysta[1DPQ and an electron passing a tunneling Il. TRANSFER MAXTRIX FORMALISM FOR

barrier, the 1DPC is used as an optical barrier to investigate COHERENT PULSES

the tunneling timeg3,4]. The experiments have shown that

the tunneling time of a single photofor a short pulse We consider the propagation of coherent light pulses pass-

through the 1DPC is superluming-7]. One of the theoret- Ing through the 1DPC's. Our method involves solving the

ical methods to study the dynamical behavior of a pulsavave equation and then combining with the boundary con-

through the 1DPC is the transfer matrix metH&g dition, and finally obtaining the evolution solutions of light
Superluminal phenomena usually refer to the fact that th@ulses inside the 1DPC's. It should be pointed out that our

group velocity of a light pulse[given by vy=c(n(w) general results can be used under any incident angle for both

+w{[dn(w)]/dw})™] in an anomalously dispersive medium the cases of TM and TE plane waves.

can be larger than the light speedn vacuum or even be-

come negativd9-11. Since the confirmation from the first A. TM waves

experiment by Chu and Wonfd2] in a number of experi- Consider that the incident pulses are composed of TM

ments[5-7,13,14, the superluminal group velocity has been yane waves as shown in Fig. 1. As is well known, in an
observed(for some good reviews, e.g., see RgfE5,18).

All these results of the experimental and theoretical investi-
gations are no violation of Einstein’s causality. Recently, the y h

mechanism of superluminal propagation has become a topic | = 771771777177
of hot debatg17]. Japha and Kurizkj18] emphasized that ! z |

the interference between different causal paths plays a key  x .
role in the tunneling process. We have also shown that the P
coherence of a light pulse plays an important role for super-
luminal propagation in dispersive media from the theory of
coherence for nonstationary light sour¢&9,2Q. The super-
luminality of a light pulse passing through an anomalous
dispersive medium will disappear when the coherence of
light decreases.

In practice, any real light source is not fully coherent. In ~ :
previous investigations, the pulse was assumed fully coher- BY
ent and decomposed into an integral of all Fourier compo-
nents. In the present paper, we will discuss the propagating /
properties of partially coherent pulse®CP’9 passing
through a 1DPC under different incident angles. We find that
the time delay between the coherent pulses and the partially FIG. 1. Schematical diagram of the 1DA€omposed of the
coherent pulses through the 1DPC is different. This may betructure of(HL)NH] under any incident angle for TM and TE
helpful to explain the discrepancy of the group delay timewaves.
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inhomogeneous dielectric medium, Maxwell’'s equations leadvhich are polarized in thg-z plane. For the simplicity, we
to the following wave equation for the magnetic induceddefine

field B [21]: ij(y,z,0) =BI(y,z0), (5a)
- Ve(x,y,z,w) - '
V2B(x,y,z,0) + % X [V X B(X,Y,Z,)] (¥, 2 w) = —CE(y”(y,Z,co), (5b)
w2 N . w) = ) w
+ Y.z w)B(xY.20) =0, (1) Ui(y.2.0) = CEJ(y,Z,0), (50

such that the magnetic componef(y,z, ») and the “two
where (x,y,z, ) is the dielectric function of the medium €lectric components’y;(y,z,w) and is(y,z,w) have the
andc is the speed of light in vacuum. Assume that the me-Same unit. The electromagnetic fields in thg plane can be
dium is homogeneous in each layer, so that we havé&xpressed by a two-component wave vector composed of
Ve(x,y,z,0)=0 in each layer. We also assume that the#j(Y,z,w) andyy(y,z, w):

magnetic-induced field is in thedirection as shown in Fig. Dy, 2, 0)
1 [i.e., B=(B,,0,0)]. Therefore Eq(1) can be written in a Wi(y,z, ) :< : ) (6)
ij(yvzl w)
scalar form
) ) 5 From Egs.(3), (4a), and (4b), we can obtain the transfer
Biy.z0) dBdy.z0) @ @B _ matrix relating Wiy +Ay,Z_1+AZ, 0) to
2 W(Y,2,0)=0. (2) e '
dy* dZ c Vi-1(Yj-1,Z-1, w):

Here we use the method of RdB] by solving Eq.(2) in Wj(yj-1 + Ay, Z-1 + Az, 0) = exlik{AyIM;(Az,w)
each single layer and then integrating all Fourier components <P 7
to obtain the temporal-spatial behavior of the pulse. For co- iy, z ), ()
herent pulses, the integral is a coherent superposition of allhere
Fourier components including the forward waves and bak- 1
ward waves with the complicated phase shifts. cogk\'Az] i~ sinfki'Az]

For any incident angle, the general solution of E).in Mj(Azw)=| . DA p; , (8
the jth layer can be expressed as ip; sinlk;’Az] co{kgj)Az]

BY(y,z ) = exp[ikg)Ay“)]{Bf(*)(yj_l,zj_l,w)exdikg)Az(”] with p;=[1/n;(w)]cosé,. From Eq.(4c), the z component of
+ B;_)(yj—lrzj—li w)ex - ikgj)AZ(j)]}’ 3) the electric field can be determined by
_ . 1

wherek(y”:kj sin6; and k(z”:kj cos#j;, andk; and ¢, are the Paj(Yj-1 + A,z + AZ, 0) = —— sin (-1 + Ay, Z;
wave number and refraction angle in tit@ layer, respec- nj(w)
tively; AyW=y-y,_; and AzZV=z-7_, are the propagating +AZ ). (9

distances in the/ and z directions in thejth layer, respec- - o
tively. The superscripts “+” and “—", respectively, denote the 1 herefore, we know the electromagnetic fields |r_15|de each
forward and backward waves. In this paper we simply as!@Ver- Becausen;(y,z, ) andy,(y,z, ) are proportional to

sume the medium is nonmagnetic and stationary. From Maxhe tangential components of the magnetic and electric fields,
, . .2 respectively, they are continuous functions across the inter-
well's equations, we have the relatiorE(y,z, w)

S, > . o face of each layer. At any positidy, z), ¥(y,z, w) connects
=[i/ oni()]V X B wheren;(w) = j(w) is the refraction in-  with W(y,, 7y, w) through a propagation matrix. Therefore, in
dex. Therefore we obtain the components of the electrighe jth layer(y;_1 <y <Y;, z-,<2<z), the field at the posi-

field, tion (y=yj_1+Ay, z=7_,+Az) is
EV(y,zw) =0, (49) W(yj-1+AY,Z 1+ AZ0) = Y(Yj-1 + AY,0)Q(Z-1 + AZ 0)
| o o X W (Yo,200), (10
E)(y.z0) =~ m explik]’Ay"] where
X{B(Yj-1,7-1, 0)exifiky’AZV] V(i1 + Ay, 0) = ex;{ikymy]f[l exliklAy]  (11)
i=1

=B (Y-1.z-1, w)exd - ik AZV]}, (4b)
and
j-1
Q(z-1 + Az, ) = M;(Az0) [ ] Mi(d}, o), (12

i=1

, sing; - .
EV(y,z,0) = - —— exlik’ Ay
y (¥,2,0) e @) Hiky Ay

X{BY(Yj-1,Zj-1, w)exflikVAZV] _ . . . _
© ) A ki) andd; is the thickness of thih layer. This equation also can
+ B (Yj-uZ-pw)exd - ik;’AZV]; (40 pe rewritten in another formW(yj_1+Ay,z_1+Az, 0)
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=Y(Yj-1+Ay, 0)V(Yo,Zj-1+AZ,w),  where  W(yp,z B"(0,0,0) = r(w)B(0,0,0),
+AzZ,0)=Q(z_1+AZ,0)¥(Yp, %, w). Thus we have the ma- (15)
trix Q, which is only related to the transformation in the BQ)(O,ZQ,Q,) :t(w)BS)(0,0,w),

direction, and the factor(y;_; +Ay, ), which is only related , , ,
to the phase shift in thg direction. From Eqs(9) and(10), wherer(w) andt(w) are, respectively, the magentic reflection

we can calculate the electric and magnetic fields at any pg?d transmission coefficients of a monochromatic plane

o : : t frequencyw. Suppose that the matriXy(w) con-
sition provided that¥(yg, 2z, ) is known. ¥(yy,z,, ) can wave at req . N
be determined by mf:tching the boundaryo condition. AJ€Cts the incident end of E(L3) and the exit end of Eq14)

shown in Fig. 1, we assume that the light is incident from the

regionz< 0 at any incident angle. In this region the field is a (Yer Zey @) N _ (0,0,0)
superposition of the incident and reflective fields, so at the (l/jl(ye % )> =11 eXF[iky)AYJ]XN(w)<¢l(O 0 )>-
incident end(0,0), we have YolYerZe =1 ¥200,0.0

(16)

We find
1//1(0,0,(1)) = BE(I)(O,O,(U) + B)((r)(0,0,w), (138) Xj_]_((})) X12((1))
Xo1(@)  Xpp(w)

By substituting Eqs(13)—<(15) into Eq.(16), we obtain

N
Xn(w) =[] Mj(djo) = ( ) 17
j=1

2(0,00) = c{E})(0,0.0) ~ B0, 00)] _ [Po%eal @) ~ Pas(@)] ~ [PoPsXsalw) = Xou(w)]

) r = ,
=pdB0.00)-B0.0w], (130 "7 [pyye) + poxuste)] - [Popsxir) + Xoa(w)]
(183
where the superscriptsandr denote the incident and reflec- t(w) = 2Po
tive light, respectively. At the exity=y,, z=z,), there is [PoX22(®) + PsXq1(@)] — [PoPsXq @) + Xp1(w)]’
only the transmitted field (18b)

where we have used the property of[d&f|=1. In terms of
r(w) andt(w), the reflectivity and transmissivity can be ob-
N . tained by[22]
U1(YerZes @) = BY (Yo 2, ) = BY(0,20, 0) [ T exlik{'Ay;],
. R=|r(w)

2 7= Py (19)
(149 Po

Thus, we can express the electromagnetic field at the initial

position(y=0, z=0) with the incidentB(x') as follows:
1+r(w) )

po[1-r(w)]/

As is well known, the magnetic field is equal to the electric
field in vacuum. So we also can write EQO) as

Uo(YerZe, ) = = CE) (Ve,Ze, ) V(0,0,0) = B§>(o,o,w)< (20

= B (Ve Ze, @)
N

=pBY(0,z, ) [ [ exdik{’Ay;], (14b)

=1 1+r(w)

Pol1 -1 (w)]

~ _ o whereE/(0,0,w) is the initial incident electric field. There-
where ps=[1/ny(w)]cosfs and ny(w) is the refractive index  fore e are able to calculate the temporal-spatial behavior of

Of the SubStI’ate. The Superscrﬂpﬂenotes the transmitted the pu'se_ By Fourier transformation Of Hq_o), we have
field. Herey, is determined by the sum over the transverse

shift Ay; of every layer in they direction (i.e., yo.=2;Ay;
=2;d;tan¢,), and this corresponds to the total transverse
shift of a light pulse in they direction.

We assume that the incident fia‘Bi')(0,0,w), the reflec- ==
tion field B(X”(o,o,w), and the transmitted fieIB(xt)(0,0,w) ¢ _
have the relations +po[1 - r(w)]Q1x(z, w) e ' “!dw, (229

¥(0,0,0) = %E(i)(0,0,w)( ) (21)

’ﬂl(yyzat) = f lpl(yi Z, w)e_iwtd(l)

1f EV(0,0,0)Y(y, 0){[1 +r(w)]Qq1(z, )
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Poly,z,t) = f (Y, z,w)e"'do By (y.z,0) = —JC— cos 6; exfik) Ay;]

() (\/. . e A 5.
- f ED(0,0,0)Y(y, 0){[1 + ()] Quu(z,0) Mg olexdik; A7)
¢ ~EQ(Y_1, 7, w)exd - ikVAZT),  (28)
+po[1 —1(w)]Quz, »)}e " “da. (22b)

) n: )
Using Eq.(9), we also get the component of the electric B (y,z,w) = - n) sin ¢, exdik{Ay;]
field in the jth layer: ¢ |
X{ES(j-1,71, 0)exd ik Az]

=2 —1 sin 6E(0,0,0)Y 1+ |
n(y,zt) = c I’]j(w) Sin 6 (0,0,0)Y(y,o){[1 +r(w)] +Ei_)(yj—lazj—lrw)exd_ik(zJ)AZj]}y (29)
X Qq1(z,w) + po[1 — () ]Q1x(z, w)}e ! dw. which is polarized in theg-z plane. We also define
(220) ¢4j(ylzv w) = EX(Y! Z, w)! (303)
Equations(22) describe the spatio temporal evolution of
light passing through the 1DPC at any incident angle. The ¥s5i(Y,2,0) = CBy(y,Z, 0), (30b)
two components of the electric displacemebfy,z,t) can
also be obtained through (.2, 0) =CB,(y,Z w), (309

1 ' such that the electric componéf;(y,z,w) and “two mag-
Dy(y,zt) =— p f €Y,z 0) Y,z 0)e"“'dw, (238 ne_tic co_mponentsi’/fzj(y,z,w) and %,-(y,z,w) have the same
unit. Using the previous subsection results, we exchange the
symbols E and B and replacep; with g; [where g
=n;(w)cos 6;]. Finally we obtain all the similar results for TE

1 .
D,(y,zt) = E f ey,z,w)Yr(y,z,w)e"'dw.  (23b) waves

¢4(y1z-t):f ¢4(Y-Zyw)e_iwtdw

B. TE waves
In a homogeneous dielectric medium, whetg,y,z, ) :f ED(0,0,0)Y(y, 0){[1 +1(0)]Q11(z o)
=¢e(w) is independent ok, y, andz, we have the following
equation for the electric fiel&: +0o[1 ~1()]Q12(z, )} “'dov, (313
2F o’ =
VEXY,Z,0) + S e(0)EXY,Z,0) =0. 24 y
(X,Y,Z,0) 2 e(w)E(X,Y,Z, ) (24) Uy 2t) = f Ye(y,2, ©)€ ' d e
For an incident pulse composed of TE plane waves, if we let
the direction of theE field be in thex direction [i.e., E :f ED(0,0,0)Y(y,0){[1 +r(w)]1Qz1(z w)
=(E,,0,0] as shown in Fig. 1, Eq24) can also be S|mpI|-
fied to a scalar form +0o[1 - M) ]Qp(z, w)}e ' “'dw, (31b)
d?E(y,z, w) d’E(y,z,w) to calculate the temporal-spatial behavior of TE-plane-wave
dy’ Zz _f(w)Ex(y'z ) =0. pulses, and we also obtain ta&omponent of the magnetic

(25) field in the jth layer:

Comparing Eq.(25) with Eq. (2), we can obtain a similar Pe(y,z,t) = _f nj(w)sin GjE(i)(0,0,w)Y(y,w){[l+r(w)]
solution by replacing the symb@& with the symbolE in the

solution obtained in the previous subsection. The general so- XQy1(z, ) + Qo1 — () ]Q12(z w) e “dw.
lution of Eq.(25) in the jth layer can be expressed as

(310
Eﬁ?(y,z, w) = exp[iki,j)ij]{Eff)(yj_l,zj_l, w)exp[ik(zj)Azj] Here the electric reflection coefficient of a monochromatic
- I lane wave at frequenay is readily obtained b
+EQY g need- kAl 26 P aHeny Y Y

R R H) = [doX22(@) = GsX11(@)] = [GoGsX1a( @) = Xp1(w)]

Due to the relatiorB(y,z,w)=(1/iw)V X E, we obtain the [CoXoo(w) + QsX11(@)] = [oUsX12(®) + Xo1(w)]
components of the magnetic-induced field: (329

BQ)(Xysz) =0, (27) and its electric transmission coefficient is given by
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(o) = 20 +Us(y,20D,(y,2.0]+ ReLga(y, 20 ua(y, 201}
[doXaz(@) + UsX11(@)] = [OoUsX1o(@) + Xog(w)]’ (36)

(32b)  Therefore, from the definition of the energy velocity, we can
wheregs=ng(w)cos f, andx; () (i,j=1,2) are the elements Obtain
of transfer matrixXy(w) between the fields of the incident |§( 29)
and exit ends. The reflectivity and transmissivity dRe VE(y,z,t):—y’ . (37
=|r(w)|? and T=(gs/qp)|t(w)|%. In this case, the electric dis- u(y,zt)

placemenD(y,z,t) can also be obtained through From this equation, we can find that the energy velocity is a

' time-dependent quantity. It should be pointed out that both
Dy(y,zt) :f €(y,Z,0) 4y, 2, 0)e" 'dw. (33)  the Poynting vecto8(y,z,t) and the energy density(y,z,t)
will been averaged in timémuch longer than 1, and
much shorter than Ww, wherewy is the center frequency of
C. Poynting vector, energy density, and energy velocity the incident pulse andw the spectral width of the incident

Now we consider how to get the Poynting vector, energ;})UIse in our numerical calculations. Below, we find that the

: . ; energy velocity changes at different space-time points. In
density, and energy velocity from the previous knowledge. . o
fact, we have pointed out recently that the energy velocity is
For TM plane waves, we have

always dependent on timeand position(y,z) and not a

E 28) = E(y.20)¥ + E(y.2.1)Z, constant any more in dispersive media due to the interference
20 =Ey,z20y+Ely,z0) between different frequency components of pul§@20].

We can also obtain the similar results for the TE-plane-wave

H(y,zt) = le(y, Z,HX. (34)  pulses.
) . a ) ) ) I1l. PARTIALLY COHERENT PULSES PROPAGATING
So the Poynting vector in nonmagnetic medidp=1) is IN 1DPC’s
given by : e ,

It is known that any real light field is always partially
coherent. For stationary fields, the theory of coherence has
been studied for a long tim2,23. Recently, the theory of
coherence of nonstationary fields has been established
ziRe[— Ey(y,z,t)B;(y, Z )7+ Ez(y,z,t)B;(y,z,t)Y] [24—2_q..The correlation.functior) of a.pulse in space-time

4ar domain is the key quantity for discussing partially coherent

1 pulses[27-29. In this section, we will extend the previous
=—Rd (Y, 2,0 (Y, Z)Z + Ys(y, 2, 4 (y,Z, 1) Y] results to the propagation of partially coherent light pulses in

4ar 1DPC'’s by using the correlation function. Because the propa-

1 gation of the correlation function also satisfies the form of
=4—(5zf+ sY), (35 the wave equationg23], for the stationary medium, we can

a . . . . .
directly obtain the evolution equations of partially coherent
herev and3 iively. th it vect f theand pulses in the 1DPC from the previous results based on the
wherey andz a.re, res;iec Ively, the unit vectors ot tk@n following definition of the correlation functions, which can
y dlrect*|on, S=9a(Y,2.0)¢(y,2,0) R and S be used to describe the propagation of the partially coherent
=ys(y,z,t)¢(y,z,1). The absolute value di(y,z,t) can be  pulses[23]:
obtained by|S(y,z,t)|=(1/4m)\s2+s2. We use this quantity -, -
to describe the magnitude of theS§Poynting vector, and the  DEe(V1.ZutiiY2Zata) = XE (1 21,ty) - E(V2. 22, ),
direction of the Poynting vector is determined by (383
arctaris,/s,). The energy density of the electromagnetic field
in such media is given by

Sy, zt) = ﬁRe[li(y,z,t) x H'(y,z1)]

To(Y1 2oty Y2, 2o to) = (H (y,20,t) - H(Y2,22,1),
1 - >y
U(yvzlt) = ET{RQE(V, Z!t) -D (yvzat)] (38b)

I - Tep(Y1,2,11:Y222,t2) = CXE (y1,2,11) - D2, Z2,t),
+RdH(y,zt) - B (y,z )]} eblY1,21,11,Y2, 2,15 Y1,21,1 Y2,2, 12

. (380
=5 {REE,(y,z0D)(y.21) + ELy,21)D;(y,2,1)] . .
m Che(Y12a,t13 Y2, 20,1) = (H (Y1, 23,11) - By, 22, 12)),
+ Rd:HX(yvzlt)Bx(yvzit)]} (38d)
1 * where the symbol(---) denotes the ensemble average.
=—{Re- (Y, zt)D,(y,z1)
8w vy Y Teely1,21,t1:Y2,2,t) and Tyy(ys,20,t1:Y2,2,t,) are the
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correlation functions of the electric and magnetic fields, re- 1

spectively. These two quantities are related to the intensties Wiy, zt) = Py Reye(y,ztyy,z )] (40b)

of the electric and magnetic fields by
The total energy density of the electromagnetic field at any
sapce-time point is given by

le(y,zt) =T Zty,zt), 39
E(y ) EE(y y ) ( a) U(yvzat) = We(y!ZI t) + Wm(Ya Z! t) . (41)
Similar to the above steps, we can construct another “mixed”
Ih(y,z,t) =Tyu(y,zt; Y,z t). (39b)  correlation vector between the electric and magnetic fields:

.> cC -, >
Teo(Y1. 2t Ve 2oty and Tua(Vi,21,ti:Ya,Zity) are, re- Pexr(y1,21,t5Y2,20,t) = 47T<E (Y1, 21,t) X H(Y2,2,10)).
spectively, the “mixed” correlation functions between the (42)
electric fields and electric displacement and the magnetic
field and magnetic-induced field, which are related to theThis mixed correlation vector is related to the Poynting vec-
average electric and magnetic energy densities in the meer by S(y,z,t)=T'g«5(yY,z,t;y,z,t). Consequently, we can
dium: also get the energy velocity of the partially coherent light
pulses through the 1DPC'’s, similar to E&7).

Using the above definitions and equation&gs.

1 ReTeo(y,z LY,z 1)], (403 (38)<42)], for TM waves, we obtain the following quanti-

We(y,zt) = O0) . . aml e
8w ties: The electric correlation function is given by

Tee(Y1, 20,15 Y2, 20, o) = (Y1, 22, t0) oY, 22, t0) + W3y, 21, t0) sy, 23, t0))

1 1 x * * * * *
:?f f W')(O,O,wl;O,O,wZ)Y (Y1, 01) Y(Y2, 0){[1 +1 (01)]Q01(Z1, 1) + Po[1 =1 (1) ]Qux(Z1, wp)}

X1 +1(02)1Q21(Z0, ) + Pl L —1(w2) |Qux(Z5, )} 117922 e dar,+ C_zf f W9(0,0,04;0,0,w,)

x {m] S O (g, 0D Y (Y [+ (0 ]Q (20, 00) + Pl L~ (0)]Qoz0, o)}
nj(wy) | m(wy)
X{[1 +r(w2)]Q11(2p, @) + Po[ 1 — (@) ]Q12(2o, o)} “117922 d gy, dawy, (43

whereWw(0,0,w,;0,0,w,) is the generalized spectral density of the initial light pulse at the incident end, and the subscripts
j andl mean the space-time poinfg,;,z,t;) and(y,,z,t,) belonging to the different layers.
The magnetic correlation function is given by

. 1 - . .
Chn(y1 20t Y2, 2, 1) =i (Y1, 21,t0) ¢1(Y1121:t1)>:?j WO(0,0,w1;0,0,02) Y (Y1, 01) Y (Yo, 02){[ 1 + 1" (1) ]Q11(21, 07)

+Pol 1 =1 (1) 1Q1o(z1, 1) H[1 + 1 (w2) 1Q11(Z5, ) + Pol L = I () 1Q12(Zp, wp) 117922 d e dawy,
(44)

and the “mixed” correlation functions between the electric field and electric displacement and the magnetic field and magnetic-
induced field are, respectively, given by
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1 ' . N .
Fep(Y1nza,t15Y2,20,t0) = ?f f W(0,0,01;0,0,0,) €(Ya, 20, 05) Y (Y1, 01) Y(Ya, 0 {[1 + 1" (01)]1Q54(21, w7)

+ Pl L~ (1) 1Qoz1, ) H[ 1 + (@) 1Q1(Z5, ) + Pol L = I (@) 1QuolZp, )} 11722 dawy dwy,

1 . ing |"sing . . .
+ _zf f WI)(O,O,wliO,O,wz)f(Y2azzaw2)[ > } > 4 (Y1, @) Y(Y2, 0{[1 +1 (01)]Q14(71, w7)
c Nj(wy) | ni(wy)

+poll =17 (1) 1Q1Az1, @) HIL +1(w2) 1Q11(Zo, @) + PolL = 1 (0)1Q12(Zp, o)} 11722y dew,  (45)
and

Chs(Y1,20,t:Y2,20,t0) = (Y1, 20,15 Y2, 20, 1) (46)

Therefore, the field intensity and energy density can be obtained fron{E})s(41). The “mixed” correlation function vector
is given by

= 1 * > * -
Fexn(Ynzty Yo 2o, tp) = E<¢2(y1121-t1) (Y2, 20,002+ (YY1, 21,10) (Y2, 25, 12))Y

1 ' N N "
= EEJ f WO(0,0,w1;0,0,02) Y (Y1, 01) Y(Ya, 02){[ 1 + 1" (1) ]Q54(21, 07)

+ o1 — 1" (1) 1Qon(21, @) H[1 +1(w2) 1Q11(Z2, ) + Pol L = (@) IQ12(Z, w,) e 112 o, daw,
1 ) 1 N N "
+)757f f V\I(I)(0107w1;0101w2)|:m5in 0j:|Y (Y1, @) Y(Yo, 0{[1 +1 (01)]Qq1(21, 1)
]
+ o1 — 1" (@9)]Q1 21, @) H 1 +1(w2)1Q1(Zp, ) + Pol L ~ () 1Q1(Z, ) /11922 deo, dawy
(47)

For TE waves, we also can obtain the similar results from E2$—(42) by using the results of the previous section.

IV. NUMERICAL RESULTS AND DISCUSSION Steinberget al. [5,6]. Each layer is characterized by its con-

In this section, we first consider the propagation of coher-Stant refractive indexn;=2.22 orn =1.41. The optical
ent Gaussian pulses through the 1DPCF’)S ?hgn in the secoll ickness of each layer isydy=n.d =Apo/4, whereAp
P 9 ) ' =692 nm is the midgap wavelength of the 1DR@hich cor-

subsection, we will discuss the propagation of partially co- .
) , responds to the center frequency of the incident pulse
herent Gaussian pulses through the 1DPC's. The effect of In Fig. 2, we show the transmission as a function of fre-

Cg?ee(;eigcdee?;i||I%?tsr?guﬁzebguieingégp(i?ﬁtrl:;? :\\IIIIHOBE C'g;;euslg:quency under different incident angles. From this figure, we
'([gilons include éll orders of diz ersion and have no approxico €€ that the band gap of the 1DPC's will move to a
mation P PP higher-frequency region as the incident angle increases. For

A. Fully coherent Gaussian pulses

First, we suppose a fully coherent plane-wave Gaussian
pulse is incident on the surface zt0. The electric field of
the Gaussian pulse at the incident surface is expressed as

2

EV(0,04) = exp<— . t 5 )exp(— iwt), (48)

J70

Transmission

and its Fourier spectrum is

72 (@ = wp)?
2

EV(0,0,0) = o'ToeXp<— >, (49)

-, (X10°HZ)

wherewy is the carrier frequency of the pulse amg, is the
pulse width.

Suppose that the 1DPC is a quarter-wave stack and has a FIG. 2. Transmission of the 1DPC fea) TM and (b) TE waves
structure of(HL)°H, which is the same as those used byunder different incident angles.
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TM plane waves, as the incident angle increases, the band 10
gap moves to a higher-frequency region and gradually disap- 5
pears(the band gap closed30]. For TE plane waves, as the [P o teemet
incident angle increases, although the band gap moves to a 5]
higher-frequency region, it mainly becomes larger and p
deeper. As is well known, the photonic band gap comes from & 16
the interference of Bragg scattering in the periodical dielec- B T
tric structure. As the incident angle varies, the interference g 5
process inside the 1DPC is changed. Therefore we expecti~ 0
that, as the incident angle increases, the temporal behavior of -5
light pulse in the 1DPC’s will also change. -10-
In Ref.[8], it was proved that the temporal-spatial evolu- 451, . . . . )
tions, especially the phases of the electric and magnetic @ @ 200 400 600 800 1000
fields are different inside the 1DPC. FiguréaBand 3b) " ' ' ) "
show the peak time of the electric fie{l@F) and the mag-
netic field(MF) at different incident angles for the TM and -0

TE pulses respectively. Due to the difference between EF ‘ ig

and MF, the time delay should be defined by the peak arrival __
time of the energy density from E¢B6) for the fully coher- 2
ent pulseg8]. Suppose the energy density at a certain point g

=

(bA)EFof TE ]

(along the light ray tracereaches the maximum at tintg.

The time delay can then be determined Qyt,,—ty (1o
=Lss/C is the time delay of light passing through the
vacumm, where o is the corresponding vacuum distance
between the incident end and the investigated point under
any incident angle as shown in Fig). IThe total zigzag
lengthL ;4 of light through the 1DPC is shown in Fig. 1. We
have

d:

L,iq= , 50
79 gcosej (50) )
. . . : )
and its corresponding distandg, of the vacuum is also B
shown in the figure, o
Letr= >, 4 cos(6 - 6) (51) i

o™ < cos 6, o

where 6, and 6, are the initial incident and refraction angles
of each layer, respectively is the thickness of each layer.
Figure 3 shows the time deldy inside the 1DPC for the

Time delay (fs)

. o .2) TE W,
TM- and TE-plane-wave pulses under different incident . €2 r e ; ; : :
angles. We find that, for both the TM- and TE-plane-wave g 24 400 Bt 800 000
pulses, as the incident angle increases, the time delay of the (€) Z axis (nm)

pulse increases. The reason is that the band gap of the 1DPC
shifts towards a higher-frequency region. _ .

In order to better understand the propagation of light G- 3. Peaktime of the EF and MF inside the 1DPC(®TM
pulses inside the 1DPC, we also use the peak tyref the and (b) TE waves, ande) the time delayty of the peak .Of the

. . : energy density forc.1) TM and (c.2) TE waves under different

total energy densijyto define the peak velocity by, incident angles
=Ly, 2/t In Figs. 4a) and 4c), we showV,, as a func- '
tion of the position inside the 1DPC under different incidentmal incident case The weaker interferencgor the incline
angles. We also plot the energy velocWy(z,t) at the time incident casesthe faster energy velocity. Conversely, for the
when the energy density reaches its maximjas shown in  peak velocity, the strong interference between the incident
Figs. 4b) and 4d)]. Comparing with the energy velocity, we and reflected waves leads to a higher peak velocity and lower
find that peak velocity is completely different from the en- energy velocity. Note that, near the exit efm-1081 nn),
ergy velocity. From Figs. @) and 4d), we can see the en- the energy velocity tends to be independent of the incident
ergy velocity never exceeds the light speed in the vacuumangle. The reason is that the interference is very weak near
while the peak velocity can exceed The energy velocity the exit end. We can find that, for large incident angles, the
will be slowed by the strong interference between the inci-energy velocity is nearly equal to the phase velocity due to
dent and reflected waves inside the 1DgQy., for the nor- the disappearance of the PGB'’s, especially for the TM plane
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- completely coherent plane-wave light pulse is obtained at the
— limit of o y—0°; in the opposite limit ofo —0, all the
space-time points become uncorrelated. Therefore, when the
parametero  varies from zero to infinity, Eq(52) repre-
sents a class of temporal partially coherent pulses with the
same space-time intensity profile, but with different coher-
ence properties.

We can obtain the generalized cross spectral density by
using the generalized Wiener-Khintchine relati@i]

= 0 —o—30" —as5 — .’""'-'/h"‘"-u""-
—

v,/je

Ve

5
>
W(0,0,w;;0,0,0,) = f J dt,dt,I'(0,0,;;0,0,t,)€ (@rtame2t2),
< (53
>
W : o ] From this equation, we can obtain the generalized spectrum
0 200 b0 6o a0 1000 of partially coherent pulses.
z axis {nm) Consider the partially coherent Gaussian pulses whose
initial intensity profile is
FIG. 4. Comparision between the peak velocity of the energy 2
density and the energy velocity at the time when the energy density 1(0,01) exp< ) (54)
reaches its maximunga) and(b) TM waves;(c) and(d) TE waves. J.0

wave. From these discussions, we can conclude that the evdhe initial correlation function of the partially coherent
lution of the pulse passing through the 1DPC is stronglyGaussian pulse is
dependent on the incident anglevhich will affect the

. . 2 2
strength of the Bragg scattering in the 1DPC I'(0,014,:0,01,) = exp< t12 )exp( t22 )
20 207,
B. Partially coherent Gaussian pulses (t
Now we turn to consider the behavior of partially coher- P[ . 402 :|exd|wo(t1 to)].
ent pulses propagating through the 1DPC. It should be Lo
pointed out that we have shown that the superluminal phe- (55

nomenon is affected by the coherence of a light pyils.
When the coherence of a light pulse decreases, the superl
minality disappears. Here we will show that how the coher-
ence of the light pulse affects the propagation and leads to a

reduction of superluminality and subluminality. It also is  \(0,0,w,;0 sz):i [t
very important to describe the evolution of the partially co- e 2 (o,0lo00)

§ubstltutmg Eq(55) into Eq.(53), we obtain the generalized
spectral density

herent light pulse inside the 1DPC and its propagation prop- (01— wg)2+ (@, — w)?
erties, because, in practice, the source is always partially xexp| - 2 w02 @2 2“’0
coherent. 2(Yo5g+ o)
First, we briefly introduce some concepts of partially co- ( )2
herent light pulses. For partially coherent pulses, the tempo- - %] (56)
ral correlation usually depends only on the time difference, 4ot oo
and we assume that the initial correlation function is in
Gaussian form: The generalized spectral shape and width of the pulse depend
I'(0,0,:0,01,) =[1(0,0.t,)1(0, Otz)]l’z on botho o and o o. Wheno o> 0, the light pulse is es-
sentially fully temporal correlatedfully coherenj. For the
p[ (t - :|exd:|w0(t1_t2)] partially coherent light pulses, the width of the_generalized
O'LO spectrum depends not only on the temporal widtl, but

(52) also on the correlated widthy 5. When o o<, the light
pulse is globally temporal uncorrelatédcohereny, and the
whereo g is the correlation time width, which measures thegeneralized spectral width is determined by the correlated
correlation between two different space-time points. Noteime width o o. Here we emphasize that the space-time pro-
that the initial intensity of the light fieldl(0,0.t) file of the pulse does not depend ofy,.
=I'(0,0,;0,0) (i=1,2) is independent ofr, 5. That is to We now consider the partially coherent Gaussian pulse
say, the space-time intensity profile of the pulse is the sam#hrough the quarter-wave stack. Substituting &) into the
for different values ofr ;. It is obvious from Eq(52) thata  equations of Sec. Ill, we can obtain the evolution of partially
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FIG. 5. Temporal-spatial evolutions of the electric and magnetic components under different correlatiotatimes 15 fs, (b) o9

=4 fs, and(c) o o=1.5 fs for TM waves at normal incidence.

coherent Gaussian pulses through the 1DPC. the larger peak velocity inside the 1DPC, while for the en-

In Fig. 5, we show the temporal-spatial evolution for the ergy velocity, it becomes larger and tends to the individual
TM plane wave at normal incidence. We find that, for thephase velocity of each layer as the coherence length of light
different correlation timeo o, the evolutions of the EF and decreases.

MF are different. When the correlation tinag is large(i.e.,

the incident field is nearly fully coherenthe evolutions of

the EF and MF inside the 1DPC are similar to the case of
coherent pulsef8]. From Fig. %a), we can find that, both EF

and MF intensity profiles are strongly attenuated, and the __
nodes of the EF and MF are much deeper. This indicates that {2

there exists a very strong interference between the forward @

and backward waves. Whem ; becomes smalfsee Figs.

5(b) and %c)], the nodes of the EF and MF become unclear,
and the electromagnetic fields attenuate much less than in the
case of the coherent pulse. This indicates that, as the coher-
ence decreases, the interference between the forward anc__
backward waves becomes weaker and weaker. In Fig. 6, we §
show the directions of the Poynting vectors inside the 1DPC g
for different correlation times at normal incidence. It can be £
found that, as the coherence of light decreases, the interfer-
ence between the forward and backward waves becomes
weak, and the region of the predominated reflective wave
(i.e., the reflective wave is larger than the forward wave

Tim

Tim

becomes less and ledsr the lower-coherence light only in @
the first few layers Thus the propagation of the pulse inthe g
1DPC becomes from superluminal to subluminal. This fur- £
ther explains how the superluminal propagation in the 1DPC =

is affected by the coherence of pulse.

Similar to the previous section, in Fig. 7 we plot the peak
velocity Vy, and the energy velocitye of the partially co-
herent pulses passing through the 1DPC with normal inci-

45
30-
15+

45

it
il
il

800 1000
z axis (nm)

dence. It can be found that the higher coherence of the light, FIG. 6. Direction of the Poynting vector inside the 1DPC for
TM waves at normal incidence under different correlation times.
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FIG. 7. Peak velocity/,, and the energy velocityg inside the
1DPC for TM pluses under different correlation times.

In Fig. 8, we show that the time delay as a function of the Subluminal \\
correlation timeo o at the exit end under different incident 1. } Supsciuminal \\\, T
angles for two cases of TE and TM pulses. For both TM and -] *—m
TE plane waves, as the correlation tirag, decreasesi.e., -2 - . — h
the coherence of light decreasthe time delay increases and 1
then gradually reaches a constant. The time delay also de- G (fS)
pends on the incident angle, and this originates from the fact Lo
that the band gap of the 1DPC will be changed. For the TM
plane wave, we know that the band gap of the 1DPC will FIG. 8. Changes of the time delay as a function of the correla-
move to a higher-frequency region and gradually disappedion time o under different incident angle@) TM waves andb)
with the increasing of the incident angjas shown in Fig. TE waves.

2(a)]. We notice that, for nearly incoherent pulses, the time

delay almost tends to be the same value and is insensitive @DPC,) with different incident angles. The dependence of

the incident angle. For the TE plane wave, as shown in Figihe ime delay(the delay of the peak of the energy denjity
2(b), due to the band gap becoming wide and deep and mO5, the incident angles and the coherence is discussed in de-

ing to the higher-frequency region, the spectrum of the pulsy;j The velocity of the pulse peak changes from superlumi-
is gradually close to the edge of the photonic band gap. This

is the reason why the time delay of coherent pulses is in-

Time delay (fs)

0

creased and becomes a positive. When the pulse loses itsg,
coherence, this is a similar situation in which the time delay "
will also tend to a constant. Figure 9 shows the shape of §
pulses with different correlation times,y at the exit end s
under normal incidence. From this figure, it can be found
that the shape of the output pulse is nearly unchanged and isg
similar to the one of the incident pulse when the correlation ®
time o o becomes very small. The time delay of the peak is E
LO

different under the different correlation timg . Therefore, ‘z:’
the delay time for the partially coherent light is different
from that predicted by the group deléstationary-phase ap-

proximatior). The coherence of light plays a very important
role for superluminal propagation media.

V. CONCLUSIONS FIG. 9. Pulse profiles at the exit end for the different correlation

We have investigated the evolution of the partially coher-times. The vertical dotted line denotes the peak position of pulses
ent pulses through the one-dimensional photonic crystahrough the same distance vacuum.
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