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The propagation of coherent and partially coherent light pulses through a one-dimensional photonic crystal
s1DPCd is investigated. The dependence of the evolution of the pulses inside the 1DPC on incident angles and
the effect of the coherence of the pulses on the propagation properties are discussed. The evolution of a pulse
inside the 1DPC is affected by the coherence of the pulse. As the coherence decreases, superluminal propro-
gation changes to subluminal propagation.
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I. INTRODUCTION

Photonic crystals have been intensively investigated in
many studies[1,2]. The most essential property of the pho-
tonic crystals is the photonic band-gap structures(PBG’s).
Due to the analogy between light through a one-dimensional
photonic crystals1DPCd and an electron passing a tunneling
barrier, the 1DPC is used as an optical barrier to investigate
the tunneling time[3,4]. The experiments have shown that
the tunneling time of a single photon(or a short pulse)
through the 1DPC is superluminal[5–7]. One of the theoret-
ical methods to study the dynamical behavior of a pulse
through the 1DPC is the transfer matrix method[8].

Superluminal phenomena usually refer to the fact that the
group velocity of a light pulse[given by vg=c(nsvd
+vhfdnsvdg /dvj)−1] in an anomalously dispersive medium
can be larger than the light speedc in vacuum or even be-
come negative[9–11]. Since the confirmation from the first
experiment by Chu and Wong[12] in a number of experi-
ments[5–7,13,14], the superluminal group velocity has been
observed(for some good reviews, e.g., see Refs.[15,16]).
All these results of the experimental and theoretical investi-
gations are no violation of Einstein’s causality. Recently, the
mechanism of superluminal propagation has become a topic
of hot debate[17]. Japha and Kurizki[18] emphasized that
the interference between different causal paths plays a key
role in the tunneling process. We have also shown that the
coherence of a light pulse plays an important role for super-
luminal propagation in dispersive media from the theory of
coherence for nonstationary light sources[19,20]. The super-
luminality of a light pulse passing through an anomalous
dispersive medium will disappear when the coherence of
light decreases.

In practice, any real light source is not fully coherent. In
previous investigations, the pulse was assumed fully coher-
ent and decomposed into an integral of all Fourier compo-
nents. In the present paper, we will discuss the propagating
properties of partially coherent pulses(PCP’s) passing
through a 1DPC under different incident angles. We find that
the time delay between the coherent pulses and the partially
coherent pulses through the 1DPC is different. This may be
helpful to explain the discrepancy of the group delay time

between experimental measurements and theoretical predic-
tions. Furthermore, we extend our results to the cases of
partially coherent light pulses passing through the 1DPC and
discuss how the coherence of light affects the propagation
dynamics of light pulses inside the 1DPC.

II. TRANSFER MAXTRIX FORMALISM FOR
COHERENT PULSES

We consider the propagation of coherent light pulses pass-
ing through the 1DPC’s. Our method involves solving the
wave equation and then combining with the boundary con-
dition, and finally obtaining the evolution solutions of light
pulses inside the 1DPC’s. It should be pointed out that our
general results can be used under any incident angle for both
the cases of TM and TE plane waves.

A. TM waves

Consider that the incident pulses are composed of TM
plane waves as shown in Fig. 1. As is well known, in an

FIG. 1. Schematical diagram of the 1DPC[composed of the
structure of (HL)NH] under any incident angle for TM and TE
waves.
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inhomogeneous dielectric medium, Maxwell’s equations lead
to the following wave equation for the magnetic induced

field BW [21]:

¹2BW sx,y,z,vd +
¹esx,y,z,vd
esx,y,z,vd

3 f¹ 3 BW sx,y,z,vdg

+
v2

c2 esx,y,z,vdBW sx,y,z,vd = 0, s1d

where esx,y,z,vd is the dielectric function of the medium
andc is the speed of light in vacuum. Assume that the me-
dium is homogeneous in each layer, so that we have
¹esx,y,z,vd=0 in each layer. We also assume that the
magnetic-induced field is in thex direction as shown in Fig.

1 [i.e., BW ;sBx,0 ,0d]. Therefore Eq.(1) can be written in a
scalar form

d2Bxsy,z,vd
dy2 +

d2Bxsy,z,vd
dz2 +

v2

c2 esvdBxsy,z,vd = 0. s2d

Here we use the method of Ref.[8] by solving Eq.(2) in
each single layer and then integrating all Fourier components
to obtain the temporal-spatial behavior of the pulse. For co-
herent pulses, the integral is a coherent superposition of all
Fourier components including the forward waves and bak-
ward waves with the complicated phase shifts.

For any incident angle, the general solution of Eq.(2) in
the j th layer can be expressed as

Bx
s jdsy,z,vd = expfiky

sjdDys jdghBx
s+dsyj−1,zj−1,vdexpfikz

s jdDzs jdg

+ Bx
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzs jdgj, s3d

whereky
s jd=kj sinu j andkz

s jd=kj cosu j, andkj and u j are the
wave number and refraction angle in thej th layer, respec-
tively; Dys jd=y−yj−1 and Dzs jd=z−zj−1 are the propagating
distances in they and z directions in thej th layer, respec-
tively. The superscripts “+” and “−”, respectively, denote the
forward and backward waves. In this paper we simply as-
sume the medium is nonmagnetic and stationary. From Max-

well’s equations, we have the relationEW sy,z,vd
=fi /vnj

2svdg¹ 3BW wherenjsvd=Îe jsvd is the refraction in-
dex. Therefore we obtain the components of the electric
field,

Ex
s jdsy,z,vd = 0, s4ad

Ey
s jdsy,z,vd = −

cosu j

cnjsvd
expfiky

s jdDys jdg

3hBx
s+dsyj−1,zj−1,vdexpfikz

s jdDzs jdg

− Bx
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzs jdgj, s4bd

Ey
s jdsy,z,vd = −

sinu j

cnjsvd
expfiky

s jdDys jdg

3hBx
s+dsyj−1,zj−1,vdexpfikz

s jdDzs jdg

+ Bx
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzs jdgj, s4cd

which are polarized in they-z plane. For the simplicity, we
define

c1jsy,z,vd = Bx
s jdsy,z,vd, s5ad

c2jsy,z,vd = − cEy
s jdsy,z,vd, s5bd

c3jsy,z,vd = cEz
s jdsy,z,vd, s5cd

such that the magnetic componentc1jsy,z,vd and the “two
electric components”c2jsy,z,vd and c3jsy,z,vd have the
same unit. The electromagnetic fields in thex-y plane can be
expressed by a two-component wave vector composed of
c1jsy,z,vd andc2jsy,z,vd:

C jsy,z,vd = Sc1jsy,z,vd
c2jsy,z,vd

D . s6d

From Eqs.(3), (4a), and (4b), we can obtain the transfer
matrix relating C jsyj−1+Dy,zj−1+Dz,vd to
C j−1syj−1,zj−1,vd:

C jsyj−1 + Dy,zj−1 + Dz,vd = expfiky
s jdDygMjsDz,vd

3C j−1sy,z,vd, s7d

where

MjsDz,vd = 1cosfkz
s jdDzg

ipj sinfkz
s jdDzg

i
1

pj
sinfkz

s jdDzg

cosfkz
s jdDzg

2 , s8d

with pj =f1/njsvdgcosu j. From Eq.(4c), thez component of
the electric field can be determined by

c3jsyj−1 + Dy,zj−1 + Dz,vd =
1

njsvd
sin u jc1jsyj−1 + Dy,zj−1

+ Dz,vd. s9d

Therefore, we know the electromagnetic fields inside each
layer. Becausec1jsy,z,vd andc2jsy,z,vd are proportional to
the tangential components of the magnetic and electric fields,
respectively, they are continuous functions across the inter-
face of each layer. At any positionsy,zd, Csy,z,vd connects
with Csy0,z0,vd through a propagation matrix. Therefore, in
the j th layersyj−1,y,yj, zj−1,z,zjd, the field at the posi-
tion sy=yj−1+Dy, z=zj−1+Dzd is

Csyj−1 + Dy,zj−1 + Dz,vd = Ysyj−1 + Dy,vdQszj−1 + Dz,vd

3Csy0,z0vd, s10d

where

Ysyj−1 + Dy,vd = expfiky
s jdDygp

i=1

j−1

expfiky
sidDyig s11d

and

Qszj−1 + Dz,vd = MjsDz,vdp
i=1

j−1

Misdi,vd, s12d

anddi is the thickness of theith layer. This equation also can
be rewritten in another formCsyj−1+Dy,zj−1+Dz,vd
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=Ysyj−1+Dy,vdCsy0,zj−1+Dz,vd, where Csy0,zj−1

+Dz,vd=Qszj−1+Dz,vdCsy0,z0,vd. Thus we have the ma-
trix Q, which is only related to the transformation in thez
direction, and the factorYsyj−1+Dy,vd, which is only related
to the phase shift in they direction. From Eqs.(9) and(10),
we can calculate the electric and magnetic fields at any po-
sition provided thatCsy0,z0,vd is known. Csy0,z0,vd can
be determined by matching the boundary condition. As
shown in Fig. 1, we assume that the light is incident from the
regionz,0 at any incident angle. In this region the field is a
superposition of the incident and reflective fields, so at the
incident ends0,0d, we have

c1s0,0,vd = Bx
sids0,0,vd + Bx

srds0,0,vd, s13ad

c2s0,0,vd = cfEy
sids0,0,vd − Ey

srds0,0,vdg

= p0fBx
sids0,0,vd − Bx

srds0,0,vdg, s13bd

where the superscriptsi andr denote the incident and reflec-
tive light, respectively. At the exitsy=ye, z=zed, there is
only the transmitted field

c1sye,ze,vd = Bx
stdsye,ze,vd = Bx

stds0,ze,vdp
j=1

N

expfiky
s jdDyjg,

s14ad

c2sye,ze,vd = − cEy
stdsye,ze,vd

= psBx
stdsye,ze,vd

= psBx
stds0,ze,vdp

j=1

N

expfiky
s jdDyjg, s14bd

whereps=f1/nssvdgcosus and nssvd is the refractive index
of the substrate. The superscriptt denotes the transmitted
field. Hereye is determined by the sum over the transverse
shift Dyj of every layer in they direction (i.e., ye=o jDyj

=o jdj tanu j), and this corresponds to the total transverse
shift of a light pulse in they direction.

We assume that the incident fieldBx
sids0,0,vd, the reflec-

tion field Bx
srds0,0,vd, and the transmitted fieldBx

stds0,0,vd
have the relations

Bx
srds0,0,vd = rsvdBx

sids0,0,vd,

s15d
Bx

stdso,ze,vd = tsvdBx
sids0,0,vd,

wherersvd andtsvd are, respectively, the magentic reflection
and transmission coefficients of a monochromatic plane
wave at frequencyv. Suppose that the matrixXNsvd con-
nects the incident end of Eq.(13) and the exit end of Eq.(14)
by

Sc1sye,ze,vd
c2sye,ze,vd

D = p
j=1

N

expfiky
s jdDyjgXNsvdSc1s0,0,vd

c2s0,0,vd
D .

s16d

We find

XNsvd = p
j=1

N

Mjsdjvd ; Sx11svd
x21svd

x12svd
x22svd

D . s17d

By substituting Eqs.(13)–(15) into Eq. (16), we obtain

rsvd =
fp0x22svd − psx11svdg − fp0psx12svd − x21svdg
fp0x22svd + psx11svdg − fp0psx12svd + x21svdg

,

s18ad

tsvd =
2p0

fp0x22svd + psx11svdg − fp0psx12svd + x21svdg
,

s18bd

where we have used the property of detfXNg=1. In terms of
rsvd and tsvd, the reflectivity and transmissivity can be ob-
tained by[22]

R= ursvdu2, T =
ps

p0
utsvdu2. s19d

Thus, we can express the electromagnetic field at the initial
position sy=0, z=0d with the incidentBx

sid as follows:

Cs0,0,vd = Bx
sids0,0,vdS 1 + rsvd

p0f1 − rsvdg
D . s20d

As is well known, the magnetic field is equal to the electric
field in vacuum. So we also can write Eq.(20) as

Cs0,0,vd =
1

c
Esids0,0,vdS 1 + rsvd

p0f1 − rsvdg
D , s21d

whereEsids0,0,vd is the initial incident electric field. There-
fore, we are able to calculate the temporal-spatial behavior of
the pulse. By Fourier transformation of Eq.(10), we have

c1sy,z,td =E c1sy,z,vde−ivtdv

=
1

c
E Esids0,0,vdYsy,vdhf1 + rsvdgQ11sz,vd

+ p0f1 − rsvdgQ12sz,vdje−ivtdv, s22ad
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c2sy,z,td =E c2sy,z,vde−ivtdv

=
1

c
E Esids0,0,vdYsy,vdhf1 + rsvdgQ21sz,vd

+ p0f1 − rsvdgQ22sz,vdje−ivtdv. s22bd

Using Eq.(9), we also get thez component of the electric
field in the j th layer:

c3sy,z,td =
1

c
E 1

njsvd
sin u jE

is0,0,vdYsy,vdhf1 + rsvdg

3Q11sz,vd + p0f1 − rsvdgQ12sz,vdje−ivtdv.

s22cd

Equations(22) describe the spatio temporal evolution of
light passing through the 1DPC at any incident angle. The

two components of the electric displacementsDW sy,z,td can
also be obtained through

Dysy,z,td = −
1

c
E esy,z,vdc2sy,z,vde−ivtdv, s23ad

Dzsy,z,td =
1

c
E esy,z,vdc3sy,z,vde−ivtdv. s23bd

B. TE waves

In a homogeneous dielectric medium, whereesx,y,z,vd
=esvd is independent ofx, y, andz, we have the following

equation for the electric fieldEW :

¹2EW sx,y,z,vd +
v2

c2 esvdEW sx,y,z,vd = 0. s24d

For an incident pulse composed of TE plane waves, if we let

the direction of theEW field be in thex direction [i.e., EW

;sEx,0 ,0d] as shown in Fig. 1, Eq.(24) can also be simpli-
fied to a scalar form

d2Exsy,z,vd
dy2 +

d2Exsy,z,vd
dz2 +

v2

c2 esvdExsy,z,vd = 0.

s25d

Comparing Eq.(25) with Eq. (2), we can obtain a similar
solution by replacing the symbolB with the symbolE in the
solution obtained in the previous subsection. The general so-
lution of Eq. (25) in the j th layer can be expressed as

Ex
s jdsy,z,vd = expfiky

s jdDyjghEx
s+dsyj−1,zj−1,vdexpfikz

s jdDzjg

+ Ex
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzjgj. s26d

Due to the relationBW sy,z,vd=s1/ivd¹ 3EW , we obtain the
components of the magnetic-induced field:

Bx
s jdsx,z,vd = 0, s27d

By
s jdsy,z,vd =

njsvd
c

cosu j expfiky
s jdDyjg

3hEx
s+dsyj−1,zj−1,vdexpfikz

s jdDzjg

− Ex
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzjgj, s28d

Bz
s jdsy,z,vd = −

njsvd
c

sin u j expfiky
s jdDyjg

3hEx
s+dsyj−1,zj−1,vdexpfikz

s jdDzjg

+ Ex
s−dsyj−1,zj−1,vdexpf− ikz

s jdDzjgj, s29d

which is polarized in they-z plane. We also define

c4jsy,z,vd = Exsy,z,vd, s30ad

c5jsy,z,vd = cBysy,z,vd, s30bd

c6jsy,z,vd = cBzsy,z,vd, s30cd

such that the electric componetci jsy,z,vd and “two mag-
netic components”c2jsy,z,vd andc3jsy,z,vd have the same
unit. Using the previous subsection results, we exchange the
symbols E and B and replacepj with qj [where qj
=njsvdcosu j]. Finally we obtain all the similar results for TE
waves,

c4sy,z,td =E c4sy,z,vde−ivtdv

=E Esids0,0,vdYsy,vdhf1 + rsvdgQ11sz,vd

+ q0f1 − rsvdgQ12sz,vdje−ivtdv, s31ad

c5sy,z,td =E c5sy,z,vde−ivtdv

=E Esids0,0,vdYsy,vdhf1 + rsvdgQ21sz,vd

+ q0f1 − rsvdgQ22sz,vdje−ivtdv, s31bd

to calculate the temporal-spatial behavior of TE-plane-wave
pulses, and we also obtain thez component of the magnetic
field in the j th layer:

c6sy,z,td = −E njsvdsin u jE
sids0,0,vdYsy,vdhf1 + rsvdg

3Q11sz,vd + q0f1 − rsvdgQ12sz,vdje−ivtdv.

s31cd

Here the electric reflection coefficient of a monochromatic
plane wave at frequencyv is readily obtained by

rsvd =
fq0x22svd − qsx11svdg − fq0qsx12svd − x21svdg
fq0x22svd + qsx11svdg − fq0qsx12svd + x21svdg

s32ad

and its electric transmission coefficient is given by

LI-GANG et al. PHYSICAL REVIEW E 70, 016601(2004)

016601-4



tsvd =
2q0

fq0x22svd + qsx11svdg − fq0qsx12svd + x21svdg
,

s32bd

whereqs=nssvdcosus, andxijsvd si , j =1,2d are the elements
of transfer matrixXNsvd between the fields of the incident
and exit ends. The reflectivity and transmissivity areR
= ursvdu2 and T=sqs/q0dutsvdu2. In this case, the electric dis-
placementDsy,z,td can also be obtained through

Dysy,z,td =E esy,z,vdc4sy,z,vde−ivtdv. s33d

C. Poynting vector, energy density, and energy velocity

Now we consider how to get the Poynting vector, energy
density, and energy velocity from the previous knowledge.
For TM plane waves, we have

EW sy,z,td = Eysy,z,tdyW + Ezsy,z,tdzW,

HW sy,z,td =
1

m
Bxsy,z,tdxW . s34d

So the Poynting vector in nonmagnetic mediumsm=1d is
given by

SWsy,z,td =
c

4p
RefEW sy,z,td 3 HW *sy,z,tdg

=
c

4p
Ref− Eysy,z,tdBx

*sy,z,tdzW + Ezsy,z,tdBx
*sy,z,tdyWg

=
1

4p
Refc2sy,z,tdc1

*sy,z,tdzW + c3sy,z,tdc1
*sy,z,tdyWg

=
1

4p
sszzW + syyWd, s35d

whereyW andzW are, respectively, the unit vectors of thex and
y direction; sz=c2sy,z,tdc1

*sy,z,td and sy

=c3sy,z,tdc1
*sy,z,td. The absolute value ofSWsy,z,td can be

obtained byuSWsy,z,tdu=s1/4pdÎsz
2+sy

2. We use this quantity
to describe the magnitude of the Poynting vector, and the
direction of the Poynting vector is determined by
arctanssy/szd. The energy density of the electromagnetic field
in such media is given by

Usy,z,td =
1

8p
hRefEW sy,z,td ·DW *sy,z,tdg

+ RefHW sy,z,td ·BW *sy,z,tdgj

=
1

8p
hRefEysy,z,tdDy

*sy,z,td + Ezsy,z,tdDz
*sy,z,tdg

+ RefHxsy,z,tdBx
*sy,z,tdgj

=
1

8p
hRef− c2sy,z,tdDy

*sy,z,td

+ c3sy,z,tdDz
*sy,z,tdg + Refc1sy,z,tdc1

*sy,z,tdgj.

s36d

Therefore, from the definition of the energy velocity, we can
obtain

VEsy,z,td =
uSWsy,z,tdu
Usy,z,td

. s37d

From this equation, we can find that the energy velocity is a
time-dependent quantity. It should be pointed out that both

the Poynting vectorSWsy,z,td and the energy densityUsy,z,td
will been averaged in time(much longer than 1/v0 and
much shorter than 1/Dv, wherev0 is the center frequency of
the incident pulse andDv the spectral width of the incident
pulse) in our numerical calculations. Below, we find that the
energy velocity changes at different space-time points. In
fact, we have pointed out recently that the energy velocity is
always dependent on timet and positionsy,zd and not a
constant any more in dispersive media due to the interference
between different frequency components of pulses[8,20].
We can also obtain the similar results for the TE-plane-wave
pulses.

III. PARTIALLY COHERENT PULSES PROPAGATING
IN 1DPC’s

It is known that any real light field is always partially
coherent. For stationary fields, the theory of coherence has
been studied for a long time[22,23]. Recently, the theory of
coherence of nonstationary fields has been established
[24–26]. The correlation function of a pulse in space-time
domain is the key quantity for discussing partially coherent
pulses[27–29]. In this section, we will extend the previous
results to the propagation of partially coherent light pulses in
1DPC’s by using the correlation function. Because the propa-
gation of the correlation function also satisfies the form of
the wave equations[23], for the stationary medium, we can
directly obtain the evolution equations of partially coherent
pulses in the 1DPC from the previous results based on the
following definition of the correlation functions, which can
be used to describe the propagation of the partially coherent
pulses[23]:

GEEsy1,z1,t1;y2,z2,t2d = c2kEW *sy1,z1,t1d ·EW sy2,z2,t2dl,

s38ad

GHHsy1,z1,t1;y2,z2,t2d = kHW *sy1,z1,t1d ·HW sy2,z2,t2dl,

s38bd

GEDsy1,z1,t1;y2,z2,t2d = c2kEW *sy1,z1,t1d ·DW sy2,z2,t2dl,

s38cd

GHBsy1,z1,t1;y2,z2,t2d = kHW *sy1,z1,t1d ·BW sy2,z2,t2dl,

s38dd

where the symbolk¯l denotes the ensemble average.
GEEsy1,z1,t1;y2,z2,t2d and GHHsy1,z1,t1;y2,z2,t2d are the
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correlation functions of the electric and magnetic fields, re-
spectively. These two quantities are related to the intensties
of the electric and magnetic fields by

IEsy,z,td = GEEsy,z,t;y,z,td, s39ad

IHsy,z,td = GHHsy,z,t;y,z,td. s39bd

GEDsy1,z1,t1;y2,z2,t2d and GHBsy1,z1,t1;y2,z2,t2d are, re-
spectively, the “mixed” correlation functions between the
electric fields and electric displacement and the magnetic
field and magnetic-induced field, which are related to the
average electric and magnetic energy densities in the me-
dium:

wesy,z,td =
1

8p
RefGEDsy,z,t;y,z,tdg, s40ad

wmsy,z,td =
1

8p
RefGHBsy,z,t;y,z,tdg. s40bd

The total energy density of the electromagnetic field at any
sapce-time point is given by

Usy,z,td = wesy,z,td + wmsy,z,td. s41d

Similar to the above steps, we can construct another “mixed”
correlation vector between the electric and magnetic fields:

GW EW 3HW sy1,z1,t1;y2,z2,t2d =
c

4p
kEW *sy1,z1,t1d 3 HW sy2,z2,t2dl.

s42d

This mixed correlation vector is related to the Poynting vec-
tor by SWsy,z,td=GW EW 3HW sy,z,t ;y,z,td. Consequently, we can
also get the energy velocity of the partially coherent light
pulses through the 1DPC’s, similar to Eq.(37).

Using the above definitions and equations[Eqs.
(38)–(42)], for TM waves, we obtain the following quanti-
ties: The electric correlation function is given by

GEEsy1,z1,t1;y2,z2,t2d = kc2
*sy1,z1,t1dc2sy1,z1,t1d + c3

*sy1,z1,t1dc3sy1,z1,t1dl

=
1

c2E E Wsids0,0,v1;0,0,v2dY*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ21
* sz1,v1d + p0

*f1 − r*sv1dgQ22
* sz1,v2dj

3hf1 + rsv2dgQ21sz2,v2d + p0f1 − rsv2dgQ22sz2,v2djeisv1t1−v2t2ddv1dv2+
1

c2E E Wsids0,0,v1;0,0,v2d

3F sin u j

njsv1dG* sin ul

nlsv2d
Y*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ11

* sz1,v1d + p0
*f1 − r*sv1dgQ12

* sz1,v1dj

3hf1 + rsv2dgQ11sz2,v2d + p0f1 − rsvdgQ12sz2,v2djeisv1t1−v2t2ddv1dv2, s43d

whereWsids0,0,v1;0 ,0,v2d is the generalized spectral density of the initial light pulse at the incident end, and the subscripts
j and l mean the space-time pointssy1,z1,t1d and sy2,z2,t2d belonging to the different layers.

The magnetic correlation function is given by

GHHsy1,z1,t1;y2,z2,t2d = kc1
*sy1,z1,t1dc1sy1,z1,t1dl=

1

c2E Wsids0,0,v1;0,0,v2dY*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ11sz1,v1d

+ p0f1 − r*sv1dgQ12
* sz1,v1djhf1 + rsv2dgQ11sz2,v2d + p0f1 − rsv2dgQ12sz2,v2djeisv1t1−v2t2ddv1dv2,

s44d

and the “mixed” correlation functions between the electric field and electric displacement and the magnetic field and magnetic-
induced field are, respectively, given by
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GEDsy1,z1,t1;y2,z2,t2d =
1

c2E E Wsids0,0,v1;0,0,v2desy2,z2,v2dY*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ21
* sz1,v1d

+ p0
*f1 − r*sv1dgQ22

* sz1,v1djhf1 + rsv2dgQ21sz2,v2d + p0f1 − rsv2dgQ22sz2,v2djeisv1t1−v2t2ddv1dv2,

+
1

c2E E Wsids0,0,v1;0,0,v2desy2,z2,v2dF sin u j

njsv1dG* sin ul

nlsv2d
Y*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ11

* sz1,v1d

+ p0
*f1 − r*sv1dgQ12

* sz1,v1djhf1 + rsv2dgQ11sz2,v2d + p0f1 − rsvdgQ12sz2,v2djeisv1t1−v2t2ddv1dv2 s45d

and

GHBsy1,z1,t1;y2,z2,t2d = GHHsy1,z1,t1;y2,z2,t2d. s46d

Therefore, the field intensity and energy density can be obtained from Eqs.(39)–(41). The “mixed” correlation function vector
is given by

GW EW 3HW sy1,z1,t1;y2,z2,t2d =
1

4p
kc2

*sy1,z1,t1dc1sy2,z2,t2dlzW + kc3
*sy1,z1,t1dc1sy2,z2,t2dlyW

= zW
1

4p
E E Wsids0,0,v1;0,0,v2dY*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ21

* sz1,v1d

+ p0
*f1 − r*sv1dgQ22

* sz1,v1djhf1 + rsv2dgQ11sz2,v2d + p0f1 − rsv2dgQ12sz2,v2djeisv1t1−v2t2ddv1dv2

+ yW
1

4p
E E Wsids0,0,v1;0,0,v2dF 1

njsvd
sin u jGY*sy1,v1dYsy2,v2dhf1 + r*sv1dgQ11

* sz1,v1d

+ p0
*f1 − r*sv1dgQ12

* sz1,v1djhf1 + rsv2dgQ11sz2,v2d + p0f1 − rsv2dgQ12sz2,v2djeisv1t1−v2t2ddv1dv2.

s47d

For TE waves, we also can obtain the similar results from Eqs.(38)–(42) by using the results of the previous section.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we first consider the propagation of coher-
ent Gaussian pulses through the 1DPC’s. Then, in the second
subsection, we will discuss the propagation of partially co-
herent Gaussian pulses through the 1DPC’s. The effect of
coherence of light on the pulse propagation will be investi-
gated in detail. It should be pointed out that all our calcula-
tions include all orders of dispersion and have no approxi-
mation.

A. Fully coherent Gaussian pulses

First, we suppose a fully coherent plane-wave Gaussian
pulse is incident on the surface atz=0. The electric field of
the Gaussian pulse at the incident surface is expressed as

Esids0,0,td = expS−
t2

2s t 0
2 Dexps− iv0td, s48d

and its Fourier spectrum is

Esids0,0,vd = st 0expS−
s t 0

2 sv − v0d2

2
D , s49d

wherev0 is the carrier frequency of the pulse andst 0 is the
pulse width.

Suppose that the 1DPC is a quarter-wave stack and has a
structure ofsHLd5H, which is the same as those used by

Steinberget al. [5,6]. Each layer is characterized by its con-
stant refractive indexnH=2.22 or nL=1.41. The optical
thickness of each layer isnHdH=nLdL=lpc/4, where lpc
=692 nm is the midgap wavelength of the 1DPC(which cor-
responds to the center frequency of the incident pulse).

In Fig. 2, we show the transmission as a function of fre-
quency under different incident angles. From this figure, we
can see that the band gap of the 1DPC’s will move to a
higher-frequency region as the incident angle increases. For

FIG. 2. Transmission of the 1DPC for(a) TM and (b) TE waves
under different incident angles.
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TM plane waves, as the incident angle increases, the band
gap moves to a higher-frequency region and gradually disap-
pears(the band gap closed) [30]. For TE plane waves, as the
incident angle increases, although the band gap moves to a
higher-frequency region, it mainly becomes larger and
deeper. As is well known, the photonic band gap comes from
the interference of Bragg scattering in the periodical dielec-
tric structure. As the incident angle varies, the interference
process inside the 1DPC is changed. Therefore we expect
that, as the incident angle increases, the temporal behavior of
light pulse in the 1DPC’s will also change.

In Ref. [8], it was proved that the temporal-spatial evolu-
tions, especially the phases of the electric and magnetic
fields are different inside the 1DPC. Figure 3(a) and 3(b)
show the peak time of the electric field(EF) and the mag-
netic field (MF) at different incident angles for the TM and
TE pulses respectively. Due to the difference between EF
and MF, the time delay should be defined by the peak arrival
time of the energy density from Eq.(36) for the fully coher-
ent pulses[8]. Suppose the energy density at a certain point
(along the light ray trace) reaches the maximum at timetm.
The time delay can then be determined bytd= tm− t0 (t0
=Leff /c is the time delay of light passing through the
vacumm, whereLeff is the corresponding vacuum distance
between the incident end and the investigated point under
any incident angle as shown in Fig. 1). The total zigzag
lengthLzig of light through the 1DPC is shown in Fig. 1. We
have

Lzig = o
j

dj

cosu j
, s50d

and its corresponding distanceL0 of the vacuum is also
shown in the figure,

Leff = o
i

di

cosui
cossu0 − uid, s51d

whereu0 andui are the initial incident and refraction angles
of each layer, respectively;di is the thickness of each layer.

Figure 3 shows the time delaytd inside the 1DPC for the
TM- and TE-plane-wave pulses under different incident
angles. We find that, for both the TM- and TE-plane-wave
pulses, as the incident angle increases, the time delay of the
pulse increases. The reason is that the band gap of the 1DPC
shifts towards a higher-frequency region.

In order to better understand the propagation of light
pulses inside the 1DPC, we also use the peak timetm (of the
total energy density) to define the peak velocity byVM
=Leffsy,zd / tm. In Figs. 4(a) and 4(c), we showVM as a func-
tion of the position inside the 1DPC under different incident
angles. We also plot the energy velocityVEsz,td at the time
when the energy density reaches its maximum[as shown in
Figs. 4(b) and 4(d)]. Comparing with the energy velocity, we
find that peak velocity is completely different from the en-
ergy velocity. From Figs. 4(b) and 4(d), we can see the en-
ergy velocity never exceeds the light speed in the vacuum,
while the peak velocity can exceedc. The energy velocity
will be slowed by the strong interference between the inci-
dent and reflected waves inside the 1DPC(e.g., for the nor-

mal incident case). The weaker interference(for the incline
incident cases), the faster energy velocity. Conversely, for the
peak velocity, the strong interference between the incident
and reflected waves leads to a higher peak velocity and lower
energy velocity. Note that, near the exit endsz=1081 nmd,
the energy velocity tends to be independent of the incident
angle. The reason is that the interference is very weak near
the exit end. We can find that, for large incident angles, the
energy velocity is nearly equal to the phase velocity due to
the disappearance of the PGB’s, especially for the TM plane

FIG. 3. Peak time of the EF and MF inside the 1DPC for(a) TM
and (b) TE waves, and(c) the time delaytd of the peak of the
energy density for(c.1) TM and (c.2) TE waves under different
incident angles.
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wave. From these discussions, we can conclude that the evo-
lution of the pulse passing through the 1DPC is strongly
dependent on the incident angle(which will affect the
strength of the Bragg scattering in the 1DPC).

B. Partially coherent Gaussian pulses

Now we turn to consider the behavior of partially coher-
ent pulses propagating through the 1DPC. It should be
pointed out that we have shown that the superluminal phe-
nomenon is affected by the coherence of a light pulse[19].
When the coherence of a light pulse decreases, the superlu-
minality disappears. Here we will show that how the coher-
ence of the light pulse affects the propagation and leads to a
reduction of superluminality and subluminality. It also is
very important to describe the evolution of the partially co-
herent light pulse inside the 1DPC and its propagation prop-
erties, because, in practice, the source is always partially
coherent.

First, we briefly introduce some concepts of partially co-
herent light pulses. For partially coherent pulses, the tempo-
ral correlation usually depends only on the time difference,
and we assume that the initial correlation function is in
Gaussian form:

Gs0,0,t1;0,0,t2d = fIs0,0,t1dIs0,0,t2dg1/2

3expF−
st1 − t2d2

4s L0
2 Gexpfiv0st1 − t2dg,

s52d

wheresL0 is the correlation time width, which measures the
correlation between two different space-time points. Note
that the initial intensity of the light field Is0,0,tid
=Gs0,0,ti ;0 ,0 ,tid si =1,2d is independent ofsL0. That is to
say, the space-time intensity profile of the pulse is the same
for different values ofsL0. It is obvious from Eq.(52) that a

completely coherent plane-wave light pulse is obtained at the
limit of sL0→`; in the opposite limit ofsL0→0, all the
space-time points become uncorrelated. Therefore, when the
parametersL0 varies from zero to infinity, Eq.(52) repre-
sents a class of temporal partially coherent pulses with the
same space-time intensity profile, but with different coher-
ence properties.

We can obtain the generalized cross spectral density by
using the generalized Wiener-Khintchine relation[31]

Ws0,0,v1;0,0,v2d =E E dt1dt2Gs0,0,t1;0,0,t2deisv1t1−v2t2d.

s53d

From this equation, we can obtain the generalized spectrum
of partially coherent pulses.

Consider the partially coherent Gaussian pulses whose
initial intensity profile is

Is0,0,td = expS−
t2

s t0
2 D . s54d

The initial correlation function of the partially coherent
Gaussian pulse is

Gs0,0,t1;0,0,t2d = expS−
t 1

2

2s t 0
2 DexpS−

t 2
2

2s t 0
2 D

3expF−
st1 − t2d2

4s L0
2 Gexpfiv0st1 − t2dg.

s55d

Substituting Eq.(55) into Eq.(53), we obtain the generalized
spectral density

Ws0,0,v1;0,0,v2d =
1

2p
Î 1

1 + sst 0/sL0d2

3expF−
sv1 − v0d2 + sv2 − v0d2

2s1/s t 0
2 + 1/s L0

2 d

−
sv1 − v2d2

4ss t 0
2 + s L0

2 d/s t 0
4 G . s56d

The generalized spectral shape and width of the pulse depend
on bothst 0 andsL0. WhensL0@st 0, the light pulse is es-
sentially fully temporal correlated(fully coherent). For the
partially coherent light pulses, the width of the generalized
spectrum depends not only on the temporal widthst 0, but
also on the correlated widthsL0. WhensL0!st 0, the light
pulse is globally temporal uncorrelated(incoherent), and the
generalized spectral width is determined by the correlated
time width sL0. Here we emphasize that the space-time pro-
file of the pulse does not depend onsL0.

We now consider the partially coherent Gaussian pulse
through the quarter-wave stack. Substituting Eq.(56) into the
equations of Sec. III, we can obtain the evolution of partially

FIG. 4. Comparision between the peak velocity of the energy
density and the energy velocity at the time when the energy density
reaches its maximum.(a) and(b) TM waves;(c) and(d) TE waves.
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coherent Gaussian pulses through the 1DPC.
In Fig. 5, we show the temporal-spatial evolution for the

TM plane wave at normal incidence. We find that, for the
different correlation timesL0, the evolutions of the EF and
MF are different. When the correlation timesL0 is large(i.e.,
the incident field is nearly fully coherent), the evolutions of
the EF and MF inside the 1DPC are similar to the case of
coherent pulses[8]. From Fig. 5(a), we can find that, both EF
and MF intensity profiles are strongly attenuated, and the
nodes of the EF and MF are much deeper. This indicates that
there exists a very strong interference between the forward
and backward waves. WhensL0 becomes small[see Figs.
5(b) and 5(c)], the nodes of the EF and MF become unclear,
and the electromagnetic fields attenuate much less than in the
case of the coherent pulse. This indicates that, as the coher-
ence decreases, the interference between the forward and
backward waves becomes weaker and weaker. In Fig. 6, we
show the directions of the Poynting vectors inside the 1DPC
for different correlation times at normal incidence. It can be
found that, as the coherence of light decreases, the interfer-
ence between the forward and backward waves becomes
weak, and the region of the predominated reflective wave
(i.e., the reflective wave is larger than the forward wave)
becomes less and less(for the lower-coherence light only in
the first few layers). Thus the propagation of the pulse in the
1DPC becomes from superluminal to subluminal. This fur-
ther explains how the superluminal propagation in the 1DPC
is affected by the coherence of pulse.

Similar to the previous section, in Fig. 7 we plot the peak
velocity VM and the energy velocityVE of the partially co-
herent pulses passing through the 1DPC with normal inci-
dence. It can be found that the higher coherence of the light,

the larger peak velocity inside the 1DPC, while for the en-
ergy velocity, it becomes larger and tends to the individual
phase velocity of each layer as the coherence length of light
decreases.

FIG. 5. Temporal-spatial evolutions of the electric and magnetic components under different correlation times(a) sL0=15 fs, (b) sL0

=4 fs, and(c) sL0=1.5 fs for TM waves at normal incidence.

FIG. 6. Direction of the Poynting vector inside the 1DPC for
TM waves at normal incidence under different correlation times.
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In Fig. 8, we show that the time delay as a function of the
correlation timesL0 at the exit end under different incident
angles for two cases of TE and TM pulses. For both TM and
TE plane waves, as the correlation timesL0 decreases(i.e.,
the coherence of light decrease), the time delay increases and
then gradually reaches a constant. The time delay also de-
pends on the incident angle, and this originates from the fact
that the band gap of the 1DPC will be changed. For the TM
plane wave, we know that the band gap of the 1DPC will
move to a higher-frequency region and gradually disappear
with the increasing of the incident angle[as shown in Fig.
2(a)]. We notice that, for nearly incoherent pulses, the time
delay almost tends to be the same value and is insensitive to
the incident angle. For the TE plane wave, as shown in Fig.
2(b), due to the band gap becoming wide and deep and mov-
ing to the higher-frequency region, the spectrum of the pulse
is gradually close to the edge of the photonic band gap. This
is the reason why the time delay of coherent pulses is in-
creased and becomes a positive. When the pulse loses its
coherence, this is a similar situation in which the time delay
will also tend to a constant. Figure 9 shows the shape of
pulses with different correlation timessL0 at the exit end
under normal incidence. From this figure, it can be found
that the shape of the output pulse is nearly unchanged and is
similar to the one of the incident pulse when the correlation
time sL0 becomes very small. The time delay of the peak is
different under the different correlation timesL0. Therefore,
the delay time for the partially coherent light is different
from that predicted by the group delay(stationary-phase ap-
proximation). The coherence of light plays a very important
role for superluminal propagation media.

V. CONCLUSIONS

We have investigated the evolution of the partially coher-
ent pulses through the one-dimensional photonic crystal

(1DPC), with different incident angles. The dependence of
the time delay(the delay of the peak of the energy density)
on the incident angles and the coherence is discussed in de-
tail. The velocity of the pulse peak changes from superlumi-

FIG. 7. Peak velocityVM and the energy velocityVE inside the
1DPC for TM pluses under different correlation times.

FIG. 8. Changes of the time delay as a function of the correla-
tion timesL0 under different incident angles.(a) TM waves and(b)
TE waves.

FIG. 9. Pulse profiles at the exit end for the different correlation
times. The vertical dotted line denotes the peak position of pulses
through the same distance vacuum.
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nal to subluminal as the coherence of the pulse decreases.
Changing the incident angle leads to the shift of the band gap
of the 1DPC, and consequently whether the evolution of
pluses inside the 1DPC is superluminal or subluminal also
depends on the incident angle.
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